Isomorphism of two infinite-chromatic triangle-free graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Still another triangle-free infinite-chromatic graph

We give a new example of a triangle-free cc-chromatic graph: the vertices of G form a oox oo matrix, V(G) = [vi,i], i, j = 1, 2, ... The vertex vi,i is connected with every vertex of the ( i + j)th column. G is triangle-free: if A has the smallest column-index among {A, B, C}c V(G) and AB, ACEE(G), then B, Care in the same column so BC¢E(G). G is infinite-chromatic: ~ ~ {1, 2, ... } denotes the...

متن کامل

On minimal triangle-free 6-chromatic graphs

A graph with chromatic number k is called k-chromatic. Using computational methods, we show that the smallest triangle-free 6-chromatic graphs have at least 32 and at most 40 vertices. We also determine the complete set of all triangle-free 5-chromatic graphs up to 23 vertices and all triangle-free 5-chromatic graphs on 24 vertices with maximum degree at most 7. This implies that Reed’s conject...

متن کامل

On-Line 3-Chromatic Graphs I. Triangle-Free Graphs

This is the first half of a two-part paper devoted to on-line 3-colorable graphs. Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced subgraphs. The key role in our approach is played by the family of graphs which are both triangleand (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular decomposition conce...

متن کامل

The fractional chromatic number of triangle-free subcubic graphs

Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 ≈ 2.909.

متن کامل

Cycles in triangle-free graphs of large chromatic number

More than twenty years ago Erdős conjectured [4] that a triangle-free graph G of chromatic number k ≥ k0(ε) contains cycles of at least k2−ε different lengths as k →∞. In this paper, we prove the stronger fact that every triangle-free graph G of chromatic number k ≥ k0(ε) contains cycles of 1 64 (1− ε)k 2 log k4 consecutive lengths, and a cycle of length at least 14 (1− ε)k 2 log k. As there ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1988

ISSN: 0012-365X

DOI: 10.1016/0012-365x(88)90181-1